III Reunión Nacional de Carotenoides y I Reunión Hispano-Portuguesa de Carotenoides

Identification and characterization of putative zaxinone synthase enzymes in tomato

Authors

Eleonora Fabene^{1,2}, Dorotea Ricci^{1,3}, Matteo Nava^{1,2}, Carla Sandri^{1,2}, Alessia Cuccurullo⁴, Maria Lobato-Gomez⁵, Jian You Wang⁶, Alessandro Nicolia⁴, Antonio Granell⁵, Salim Al-Babili⁶, Luca Santi², Gianfranco Diretto¹, Olivia Demurtas¹

Affiliation

¹ Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Centro Ricerche "Casaccia", Laboratorio Biotecnologie, Roma, 00123, Italy

² Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy

³ Dipartimento di Scienze e Tecnologie per l'Uomo e l'Ambiente, Università Campus Bio-Medico, Via Alvaro del Portillo 21, 00128 Roma, Italy

⁴ CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy

⁵ Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politecnica de Valencia, Valencia, Spain

⁶ Division of Biological and Environmental Science and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

Abstract

The cleavage of carotenoids, mediated by CCDs (Carotenoid Cleavage Dioxygenases) enzymes, provides the biosynthesis of apocarotenoids, a wide class of metabolites that includes phytohormones, signal molecules, chromophores and aroma constituents. In addition to the five CCD subfamilies identified and characterized so far (NCED, CCD1, CCD4, CCD7, CCD8), a sixth subfamily, named ZAS (zaxinone synthase), has recently been identified in *Oryza sativa*. The rice genome encodes four homologs, called *OsZAS, OsZAS1b, OsZAS1c* and *OsZAS2*. Among these, only the *OsZAS* and *OsZAS2* functions were investigated: both enzymes cleave the apocarotenoid β -apo-10'-zeaxanthinal (C27) derived from zeaxanthin (C40), at the C13-C14 double bond, yielding zaxinone (C18). Zaxinone is an important growth regulating apocarotenoid metabolite in rice; it is involved in arbuscular mycorrhizal symbiosis and in the interaction with parasitic weeds, also influencing strigolactones levels in roots and exudates. Zaxinone has also been detected in *Solanum lycopersicum*, prompting our interest in exploring its function and biosynthetic pathway in this species.

We have identified three orthologs of the rice ZAS enzyme in tomato genome, named *SIZAS*, *SIZAS-like 1* and *SIZAS-like 2* through a series of bioinformatical analysis. We decided to evaluate their enzymatical functions trough different experimental strategies: both heterologous expression in bacteria followed by

III Reunión Nacional de Carotenoides y I Reunión Hispano-Portuguesa de Carotenoides

in vitro assays and reverse genetic approaches, generating knock-out tomato plants in our genes of interest using CRISPR/Cas9 technique.

In vitro assays were conducted to evaluate the enzymatic activities of tomato ZAS enzymes, focusing on their ability to cleave apo-10'-zeaxanthinal to produce zaxinone. Preliminary results indicate that only SIZAS enzyme catalyzes this reaction.

Using CRISPR/Cas9 technique, tomato plants (*var.* MoneyMaker) edited in *SIZAS* gene have been obtained. Phenotypic, biochemical, and molecular characterization of *zas loss-of-function* mutants (T_4 generation) revealed reduced shoot growth and a less developed root system compared to wild-type plants. In addition, we have obtained T_0 generation plants edited in *SIZAS-like 1* and *SIZAS-like 2*, which are currently undergoing molecular screening.

Further investigations and analyses will elucidate the enzymatic functions of these genes and clarify the zaxinone biosynthetic pathway also in tomatoes, a globally important agricultural species. Understanding these physiological processes is crucial for advancing tomato cultivation in terms of food safety.

Keywords: apocarotenoids, genome editing, tomato, zaxinone synthase, zaxinone.

Preferred participation: Oral